Электронный учебник

 
 
 

Глава 5. Лекарственные средства для парентерального применения


5.10. Методы стерилизации

По требованиям Государственной Фармакопеи ХI-го издания все готовые лекарственные препараты должны выдерживать тест на микробиологическую чистоту. Поэтому процесс стерилизации имеет большое значение при изготовлении всех лекарственных форм, а особенно инъекционных.

Под стерилизацией (обеззараживание, обеспложивание) понимают совокупность физических, химических и механических способов освобождения от вегетативных и покоящихся форм микроорганизмов (H. Horn, 1984).

ГФ ХI издания определяет стерилизацию как процесс умерщвления в объекте или удаления из него микроорганизмов всех видов, находящихся на всех стадиях развития.

Поскольку к производству стерильных лекарственных форм предъявляют высокие требования по микробиологической чистоте (надежность стерильных инъекционных препаратов должна быть не ниже 10–6), то обеспложиванию подвергаются не только готовый продукт, но и используемое оборудование, вспомогательные материалы, фильтры, растворители, исходные вещества. Выбор того или иного способа стерилизации должен основываться на экономических соображениях и технологичности обработки, включая возможность ее автоматизации. От правильно подобранного метода стерилизации зависит качество производимой стерильной продукции.

В технологии лекарственных форм промышленного производства в настоящее время используют 3 группы методов стерилизации:

  • Механические
  • Химические
  • Физические

Механические методы стерилизации

Стерилизующая фильтрация. Микробные клетки и споры можно рассматривать как нерастворимые образования с очень малым (1-2 мкм) размером частиц. Подобно другим включениям, они могут быть отделены от жидкости механическим путем – фильтрованием сквозь мелкопористые фильтры. Этот метод стерилизации включен в ГФ ХI для стерилизации термолабильных растворов.

По механизму действия фильтрующие перегородки, используемые для стерильной фильтрации, подразделяют на глубинные и поверхностные (мембранные) с размером пор не более 0,3 мкм.

Глубинные фильтры характеризуются сложным механизмом задержания микроорганизмов (ситовым, адсорбционным, инерционным). Ввиду большой толщины таких фильтров удерживаются и частицы меньшего размера, чем размер пор фильтрующей перегородки.

Глубинные фильтры бывают: керамические и фарфоровые (размер пор 3-4 мкм), стеклянные (около 2 мкм), бумажно-асбестовые (1-1,8 мкм). Недостатками керамических и фарфоровых фильтров является продолжительность стерилизации, потеря раствора в порах толстого фильтра, образование микротрещин из-за хрупкости материала и, следовательно, ненадежность стерилизации.

Стеклянные фильтры малопроизводительны, бумажно-асбестовые фильтры не рекомендуются для стерилизации инъекционных растворов, поскольку они состоят из волокнистых материалов и имеется угроза отрыва волокон от фильтра. Попадая в организм с раствором, такие волокна могут вызывать различные патологические реакции.

Получившие в последние годы большое распространение для стерилизующей фильтрации микропористые мембранные фильтры, лишены этих недостатков.

Мембранные фильтры представляют собой тонкие (100-150 мкм) пластины из полимерных материалов, характеризующиеся ситовым механизмом задержания микроорганизмов и постоянным размером пор (около 0,3 мкм). Во избежание быстрого засорения фильтра мембраны используют в сочетании с префильтрами, имеющими более крупные поры. При стерилизации больших объемов растворов оптимальным является применение фильтров обоих типов.

Использование глубинных и мембранных фильтров обеспечивает необходимую чистоту, стерильность и апирогенность растворов для инъекций.

Стерилизующая фильтрация имеет преимущества по сравнению с методами термической стерилизации. Для многих растворов термолабильных веществ (апоморфина гидрохлорид, викасол, барбитал натрия и другие) он является единственно доступным методом стерилизации. Метод весьма перспективный в производстве глазных капель.

Химические методы стерилизации

Эти методы основаны на высокой специфической (избирательной) чувствительности микроорганизмов к различным химическим веществам, что обусловливается физико-химической структурой их клеточной оболочки и протоплазмы. Механизм антимикробного действия многих таких веществ еще не достаточно изучен. Считают, что некоторые вещества вызывают коагуляцию протоплазмы клетки, другие – действуют как окислители, ряд веществ влияет на осмотические свойства клетки, многие химические факторы вызывают гибель микробиологической клетки благодаря разрушению ферментной системы. Основой любого варианта химической стерилизации является взаимодействие бактерицидного вещества с компонентами микробной клетки или споры.
Химическая стерилизации подразделяется на стерилизацию растворами (веществами) и стерилизацию газами (газовая стерилизация).

Стерилизация растворами или веществами. Стерилизацию растворами (веществами) серийно выпускаемой инъекционной продукции в заводских условиях не используют, так как введение в раствор постороннего биологического активного вещества нежелательно из-за возможного химического взаимодействия стерилизующего агента с действующими компонентами, а также из-за возможных побочных действий этого агента на организм человека. Еще одно принципиальное ограничение данного метода связано с тем, что практически любое бактерицидное вещество обладает определенной селективностью и его эффективность проявляется при высоких концентрациях или часто в определенных интервалах рН, недопустимых для живых организмов. Этот вид стерилизации используют для обеззараживания различной аппаратуры, трубопроводов и другого оборудования, применяемого в производстве стерильной продукции.

Газовая стерилизация. Своеобразной химической стерилизацией является метод стерилизации газами. Преимуществом метода является возможность стерилизации объектов в пластмассовой упаковке, проницаемой для газов. В герметическую камеру вводят стерилизант – смесь этиленоксида и углерода диоксида в соотношении 9:1. Углекислый газ добавляют в связи со взрывоопасностью окиси этилена. При стерилизации стерилизант поступает в аппарат под давлением до 2 кгс/см2 (196133 Н/м2) при температуре 43-45°С. Продолжительность стерилизации зависит от проницаемости упаковки, толщины слоя материала и продолжается от 4 до 20 часов. Затем этиленоксид удаляют продуванием стерильным воздухом (азотом) или путем вакуумирования.

При химической стерилизации газами погибают все вегетативные формы микроорганизмов и плесневые грибы.

Для стерилизации донорского материала, растворов кровезаменителей или продуктов, полученных из крови, широко применяют β-пропиолактон.

Главный недостаток химических методов стерилизации – необходимость освобождения простерилизованного объекта от остатков стерилизанта и продуктов возможного взаимодействия. Широкому распространению этого метода препятствуют длительность стерилизации, высокая стоимость, возможность побочного действия химического агента на обслуживающий персонал и, тем не менее, для ряда лекарственных препаратов – это единственно надежный способ стерилизации в современных условиях.

Использование консервантов. Добавление консервантов условно можно отнести к методам химической стерилизации. Введение консервантов в растворы проводится в тех случаях, когда нельзя гарантировать сохранение стерильности. При этом возможно снижение температуры стерилизации или сокращение времени ее проведения.

Механизмы воздействия консервантов на микроорганизмы очень различны и определяются их химическим строением. Основным результатом при этом является нарушение жизненных функций клетки, в частности, инактивация белковой части клеточных ферментов. В зависимости от степени инактивации наступает либо гибель клетки, либо замедление ее жизненных функций.

Физические методы стерилизации

Тепловая (термическая) стерилизация. В настоящее время монопольное положение среди возможных методов стерилизации в фармацевтическом производстве занимает тепловая стерилизация.

В зависимости от температурного режима тепловая стерилизация подразделяется на:

Стерилизация паром под давлением. Автоклавирование – это стерилизация растворов, устойчивых к нагреванию, паром под давлением 1,1 атм при температуре 119-121°С. В данных условиях погибают не только вегетативные, но и споровые микроорганизмы за счет коагуляции белка клетки.

Этот традиционный способ стерилизации обладает сегодня преимуществом перед другими по трем причинам. Во-первых, он дает возможность стерилизации препаратов в конечной герметичной упаковке, что исключает опасность вторичной контаминации. Во-вторых, благодаря длительной практике использования он обеспечен достаточно надежной аппаратурой. И, в-третьих, на сегодняшний день он наиболее экономичен.

При этом методе происходит комбинированное воздействие на микроорганизмы высокой температуры и влажности, при этом погибают самые стойкие споры. Коагуляция белковых веществ в этих условиях начинается при температуре 56°С.

Стерилизацию паром под давлением проводят в стерилизаторах различной конструкции цилиндрической или квадратной формы. Стерилизаторы квадратной формы типа АП-7 (рис. 5.25.), АП-18 имеют двери с двух сторон: через одну происходит загрузка нестерильной продукции; через другую – выгрузка простерилизованной. Корпус автоклава нагревается глухим паром, чтобы не было его конденсации в рабочей камере. Затем в камеру для вытеснения воздуха подается острый пар. Отчет времени стерилизации начинается с момента достижения заданного давления по манометру. Стерилизаторы оснащены автоматической контрольной аппаратурой, с помощью которой на контрольной ленте записывается давление и время стерилизации. Условия стерилизации продукции указаны в промышленных регламентах или другой нормативно-технической документации.

Устройство парового стерилизатора АП-7

Рис. 5.25. Устройство парового стерилизатора АП-7
1 – корпус; 2 – крышка; 3 – теплоизоляция; 4 – стерилизационная камера; 5 – клапан предохранительный; 6 – пульт управления; 7 – полка; 8 – подача острого пара

Стерилизацию растительных масел и жиров в заводских условиях осуществляют паром под давлением в герметически закрытых сосудах при температуре 119-121°С и давлении 1,0-1,1 атм. в течение 2 часов.

Автоклавированию также подвергаются установки для стерилизующего фильтрования, фильтрующие перегородки и другой вспомогательный материал, используемый в технологическом процессе производства инъекционных лекарственных форм.

Среди недостатков метода можно выделить невозможность стерилизации растворов, содержащих термолабильные вещества, опасность работы с паром под давлением, отсыревание многих материалов во время стерилизации и др.

Стерилизация текучим паром. Растворы веществ, термически малоустойчивые, иногда стерилизуют при 100°С текучим паром (без примеси воздуха и избыточного давления). Насыщенный пар убивает только вегетативные формы микроорганизмов и при наличии в объекте споровых форм этот метод неэффективен.

Тиндализация (дробная стерилизация). Для термолабильных веществ, а также для растворов в шприц-ампулах стерилизацию иногда проводят методом тиндализации. Суть метода заключается в трехкратном нагревании растворов до 40-60°С с перерывами в сутки, в течение которых объекты термостатируют при температуре 37±1°С для прорастания споровых форм в вегетативные.

Стерилизация сухим жаром (воздушная стерилизация). Стерилизация сухим жаром, проводимая в аэростерилах или других аппаратах этого типа, также высокоэффективна. При этом погибают все формы микроорганизмов за счет пирогенетического разложения белковых веществ. Однако, высокая температура нагрева (160-200°С), длительное время воздействия (1-2 часа) и сухой горячий воздух оказывает повреждающее действие на стерилизуемые объекты и, следовательно, ограничивают возможности данного способа.

Инъекционные растворы не подвергают стерилизации сухим жаром, так как из-за плохой теплопроводности воздух не обеспечивает быстрый нагрев растворов до температуры стерилизации, а длительный прогрев – приводит к разложению большинства лекарственных веществ.

Сухим жаром стерилизуют некоторые термостойкие порошки, масла, стеклянную тару (ампулы, флаконы и необходимую посуду), вспомогательные материалы.

Лучшими являются стерилизаторы с ламинарным потоком стерильного воздуха, нагретого до требуемой температуры, что улучшает создание равномерного температурного поля и устраняет загрязнения от обогреваемых стенок  камеры и из воздуха, попадаемого в момент выгрузки объекта.

Радиационная стерилизация. Лучистая энергия губительно действует на клетки живого организма, в том числе и на различные микроорганизмы. Принцип стерилизующего эффекта этих излучений основан на способности вызывать в живых клетках при определенных дозах поглощенной энергии такие изменения, которые неизбежно приводят их к гибели за счет нарушения метаболических процессов и коагуляции белка.

Источником ионизирующих γ-излучений служат долгоживущие изотопы 60Со27, 137Cs55, ускорители электронов прямого действия и линейные ускорители электронов. Для бактерицидного эффекта достаточно от 15 до 25 кГр, причем верхний предел необходим для инактивации споровых форм.

В настоящее время накоплен большой опыт применения этого метода, точно установлены типичные дозы излучения, необходимые для надежной стерилизации, разработано радиационное оборудование для высокопроизводительного процесса стерилизации, решены вопросы безопасности работы установок для обслуживающего персонала.

Этот метод по экономическим показателям превосходит асептическое изготовление растворов со стерильной фильтрацией, но несколько уступает тепловой стерилизации. Однако, в будущем может приблизиться к ней из-за неизбежного снижения относительной стоимости изотопов, которые являются побочным продуктом атомной энергетики.

Ультразвуковая стерилизация. Прохождение ультразвука (УЗ) в жидкой среде сопровождается чередующимися сжатиями, разрежениями и большими переменными ускорениями. В жидкости образуются разрывы, называемые кавитационными полостями. В момент сжатия эти полости захлопываются. Избыточное давление, создаваемое УЗ-волной, накладывается на постоянное гидростатическое и суммарно может составлять в пузырьках несколько атмосфер. В качестве «зародышей» кавитационных полостей могут быть пузырьки газа, пара в жидкости, твердые частицы и места неровностей твердой поверхности. Большие импульсные давления кавитаций приводят к разрушению целостности клеточной мембраны микроорганизмов, споровых образований и других частиц. Важно установить оптимальные параметры процесса стерилизации, так как высокие импульсные давления могут приводить к механическому разрушению ампул. Стерилизующая частота  звука должна быть в пределах 18-22 кГц.

И, хотя метод очень эффективен, он не нашел широкого применения из-за сложности аппаратурного оснащения и возможных сложных химических превращений компонентов растворов. Вопросы стабильности компонентов при УЗ-стерилизации имеют много общего с аналогичными проблемами радиационной стерилизации. Для повышения устойчивости лекарств при ультразвуковом воздействии необходимо подобрать такие условия стерилизующей обработки, которые обеспечивают снижение вводимой в систему энергии на тех частотах ультразвука, которые одновременно со стерилизацией не приводят к разложению компонентов лекарственных препаратов.

Чаще метод применим при производстве эмульсий и суспензий с целью  лучшего диспергирования веществ в них и одновременно получения стерильных гетерогенных систем для парентерального применения.

Стерилизация токами высокой и сверхвысокой частоты. К настоящему времени нет единой точки зрения на механизм инактивации микроорганизмов при ВЧ- и СВЧ-облучении. Существует мнение об исключительно тепловом механизме действия токов высокой частоты на биологические объекты.  Принцип действия высокочастотного поля заключается в его активном воздействии на ориентацию молекул вещества. Изменение направленности поля вызывает изменение ориентации молекул и поглощение части энергии поля веществом. В результате происходит быстрый нагрев вещества во всех точках его массы.

Менее широко распространены представления о том, что, помимо тепловых процессов, на гибель микроорганизмов оказывает влияние специфическое действие ВЧ- и СВЧ-излучения.

С помощью СВЧ-энергии возможно стерилизовать в расфасованном виде готовую продукцию:  глазные мази, пасты в тубах, лекарственные средства в конвалютах, порошки, таблетки, пористые лиофилизированные массы, не содержащие гидрофильные жидкости. Стерилизация ампулированных растворов и жидких лекарственных форм, укупоренных герметически нежелательна, так как в замкнутой емкости возникает избыток давления паров испарившейся жидкости, взрывающий ее. В результате наступает разгерметизация в виде растрескивания стенок ампул или срыва укупорочного материала.

Метод также не нашел широкого применения из-за сложности аппаратурного оснащения и возможности неблагоприятного воздействия быстрого кратковременного нагрева инъекционного раствора.

Стерилизация ультрафиолетовым излучением. Из-за возможности образования ядовитых продуктов и возможности разложения биологически активных компонентов инъекционных растворов под действием УФ-излучения, метод не нашел своего применения для стерилизации препаратов для инъекций. Однако он широко используется для стерилизации порошков, воды для инъекций, вспомогательных материалов, воздушной среды производственных помещений, технологического оборудования и других объектов.

При стерилизации воздушной среды производственных помещений в качестве источников УФ-радиации используют специальные лампы БУВ (бактерицидная увиолевая), которые изготавливают в виде трубки из специального увиолевого стекла, способного пропускать УФ-лучи, с электродами из длинной вольфрамовой спирали, покрытой бария и стронция гидрокарбонатами. В трубке находится ртуть и аргон при давлении в несколько мм рт.ст. Источником УФ-лучей является разряд ртути, происходящий между электродами при подаче на них напряжения. Излучение лампы БУВ обладает большим бактерицидным действием, так как максимум излучения лампы близок к  максимуму бактерицидного действия (254 нм).

Количество и мощность бактерицидных ламп подбирается так, чтобы при прямом облучении на 1 м3 объема помещения приходилось не менее 2-2,5 Вт мощности излучателя. Промышленностью выпускаются лампы БУВ-15, БУВ-30, БУВ-60 и др. (цифра обозначает мощность в Ваттах), а также бактерицидные облучатели: настенный ОБН, состоящий из двух ламп БУВ-30; потолочный ОБП – из 4 ламп БУВ-30; передвижной маячного типа ОБПЕ – из 6 ламп БУВ-30. Облучатели используют только при отсутствии в помещении людей.

Для стерилизации воды применяют аппараты с погруженными и непогруженными источниками УФ-радиации. В аппаратах первого типа источник УФ-излучения (бактерицидная увиолевая лампа, покрытая кожухом из кварцевого стекла) помещается внутри водопровода и обтекается водой. Данный способ стерилизации больших объемов воды для инъекций является наиболее экономичным.

В аппаратах с непогруженными лампами последние помещаются над поверхностью облучаемой воды. В связи с тем, что обычное стекло практически непроницаемо для ультрафиолетовых лучей, водопровод в местах облучения делают из кварцевого стекла, а это значительно повышает стоимость аппарата. В настоящее время разработана возможность замены кварцевого стекла полиэтиленовым, свободно пропускающим УФ-радиацию.

Как положительный фактор, следует отметить, что при стерилизации воды не происходит накопления пероксидных соединений и под действием УФ-излучения инактивируются некоторые пирогенные вещества, попавшие в воду.

Стерилизация ИК- и лазерным излучением. Электронная стерилизация. Эти перспективные виды стерилизации практически не находят сегодня применения, хотя возможности для этого имеются.

Облучение инъекционных водных систем инфракрасным (ИК) излучением в областях поглощения воды (l = 2,7 мкм) может быть эффективным средством ее нагрева и тем самым является по сути еще одним вариантом тепловой стерилизации. Наличие достаточно мощных источников ИК-излучения позволяет надеяться на возможность создания оборудования для высокопроизводительной технологии. Преимуществом этого метода перед традиционным автоклавированием может считаться возможность отказа от небезопасного в обслуживании и нетехнологичного перегретого пара.

Принципиально возможны  способы стерилизации с применением лазерного и электронного излучения, при этом можно достичь высокой эффективности стерилизации как путем интенсивного нагрева вследствие поглощения мощного излучения в воде, так и за счет селективного поглощения излучения макромолекулами микроорганизмов в многоквантовых процессах. Однако исчерпывающих исследований применительно к какой-либо конкретной системе, совокупность которых дала бы основание о создании хотя бы основ таких методов стерилизации, пока не проведено.

 

© Национальный фармацевтический университет, кафедра заводской технологии лекарств